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A hydrodynamic model for determining the electrophoretic speed of a polyelectrolyte through a nanopore is
presented. It is assumed that the speed is determined by a balance of electrical and viscous forces arising from
within the pore and that classical continuum electrostatics and hydrodynamics may be considered applicable.
An explicit formula for the translocation speed as a function of the pore geometry and other physical param-
eters is obtained and is shown to be consistent with experimental measurements on DNA translocation through
nanopores in silicon membranes. Experiments also show a weak dependence of the translocation speed on
polymer length that is not accounted for by the present model. It is hypothesized that this is due to secondary
effects that are neglected here.
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Electrically driven translocation of DNA across natural
and artificial nanopores can be detected on the single-
molecule level by observing the increase of electrical resis-
tance of the pore during such events �1�. Nanoscale pores
may be fabricated by the self-assembly of the natural protein
�-hemolysin on a lipid bilayer membrane �2,3� or by anneal-
ing a microfabricated hole in a Si/SiO2 substrate using an
intense electron beam from a transmission electron micro-
scope �TEM� �4�. The setup for detecting the translocation
events consists of a reservoir containing an electrolyte that is
partitioned into two chambers by a membrane with the
nanometer-scale pore forming the only communication be-
tween the two sides. An electrical potential difference is ap-
plied across the membrane, and the resulting current is moni-
tored. The passage of a DNA strand is signaled by a drop in
the current. The duration and amount of these dips in the
current contain signatures of the DNA such as its length and
base sequence. Possible applications of the technique to
rapid DNA sequencing is being explored �3�.

Lubensky and Nelson �5� provided an interpretation of
some of the features of the experimental work cited above. In
particular, they proposed a drift diffusion equation for P�s , t�:
the probability that the DNA is found to have a length s on a
given side of the partition at time t. This equation was shown
to explain qualitatively the shape of the observed distribution
of translocation times. It was presumed that the drift velocity
itself is determined by a resistive force that opposes the elec-
trical driving force, but the exact physical nature of this re-
sistive force remained unclear. Viscous resistance could be a
reasonable contender for a resistive force localized around
the nanopore, but a simple estimate appeared to indicate that
its value was orders of magnitude smaller than what was
required.

Polymer translocation across nanopores driven by a vari-
ety of physical mechanisms have a number of other applica-
tions in biology; the injection of DNA from a virus into a
host cell is a particularly interesting example �6�. These
problems have been addressed by a number of authors
�7–13� by formulating the problem in a probabilistic setting

as a transition between two states separated by a barrier in
the configurational entropy of the polymer chain. In all cases,
the hydrodynamic resistance of the pore, when considered at
all, is simply parametrized by a resistance coefficient. Most
of the theoretical investigations of the subject to date are
devoted to understanding how the translocation time of a
polymer scales with polymer length, the scaling exponent
being a quantity that may be expected to be independent of
details such as the pore resistance and therefore amenable to
experimental verification.

In this paper, we explicitly determine the translocation
time by actually solving a simple hydrodynamic model for
the translocation of a polymer through a water-filled pore.
Translocation speeds are calculated and compared with the
experimental data of Storm et al. �14� for solid-state nanop-
ores.

Figure 1 is a sketch of the setup that also helps to explain
our notation. The pore is assumed to be cylindrically
symmetric1 about the z axis and described by a function R�z�
that gives the distance to the wall of the pore from the axis at
any z location. The part of the polyelectrolyte within the pore
is modeled as a straight cylinder of radius a and carrying a
uniform charge of density � per unit length. The length of the
pore is L, and the electric field E�z� is in the z direction.
Constancy of the current I through any cross section orthogo-
nal to the z axis requires

E�z� =
I

���R2�z� − a2�
, �1�

where � is the ionic conductivity of the buffer. It is assumed
here that the electric field and current vectors make only a
small angle to the z axis, an assumption that is asymptoti-
cally approached in the limit �R��z���1 for all z where the
prime indicates derivative. The electrical conductivity � is
taken as a constant in the pore with the same value as in the
buffer.

*Electronic address: s-ghosal@northwestern.edu

1In the experiments reported in Ref. �14� the pore is actually py-
ramidal in shape, tapering to a cone near the apex. However, since
most of the resistance comes from the zone with the smallest gap
width, the difference is not very significant.
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Next the fluid flow in the region between the polyelectro-
lyte cylinder and the walls of the nanopore is described, as-
suming that classical continuum constant density hydrody-
namics is applicable. The assumption �R��z���1
immediately suggests that the problem may be treated in the
lubrication limit �15,16�, so that �i� the pressure �p� is inde-
pendent of the radial coordinate �r�, p= p�z�, �ii� the flow �u�
is primarily along the z axis, u�w�r ,z�k̂, and �iii� axial gra-
dients are negligible in comparison with radial ones. There-
fore, w satisfies

−
dp

dz
+

�

r

d

dr
�r

dw

dr
� = 0, �2�

where � is the dynamic viscosity of the buffer. Equation �2�
does not contain an electric body force term because, except
for a thin Debye layer next to the polyelectrolyte, the bulk
solution is electrically neutral.

In order to solve Eq. �2� boundary conditions must now
be specified. On the pore walls the classical boundary con-
dition of no slip is assumed:

w„R�z�,z… = 0. �3�

The polyelectrolyte cylinder itself will be surrounded by a
charge cloud of counter-ions. The thickness of this Debye
layer is measured by the Debye length �D, which for the high
salt ��1 M KCl� buffers in these experiments is extremely
small: �D�0.3 nm. The problem is therefore treated in the
thin-Debye-layer limit, which amounts to prescribing an ap-
parent slip �17,18� on charged surfaces �in SI units�:

w�a,z� − v = −
��E�z�

�
. �4�

Here v is the translocation velocity of the polyelectrolyte, �
is the zeta potential at the surface of the polyelectrolyte, and
� is the permittivity of the electrolyte. The boundary condi-
tion �4� provides the coupling between the fluid and electri-
cal problems.

The solution to Eq. �2� with boundary conditions �3� and
�4� is

w�r,z� = −
p��z�
4�

�R2 − r2�

+ 	v +
a2

R2 − a2ue +
p��z�
4�

�R2 − a2�
 ln�R/r�
ln�R/a�

,

�5�

where

ue = −
��I

�a2��
�6�

defines a characteristic velocity scale for the problem. The
pressure gradient p��z� can be determined from the condition
of mass conservation,

Q = �
a

R�z�

w�r,z��2�r�dr , �7�

where Q is the flow rate through the pore. Substitution of Eq.
�5� into Eq. �7� gives

a2

4�

dp

dz
=

Q

�a2

2 ln R*

�R*
2 − 1�f

− �v +
ue

R*
2 − 1

�R*
2 − 2 ln R* − 1

�R*
2 − 1�f

,

�8�

where f =R*
2−1− �R*

2+1�ln R* and R*=R�z� /a. The solutions
�5� and �8� still contains two undetermined parameters v and
Q. These are determined by imposing the conditions that
there be no pressure difference across the pore,

p�0� = p�L� , �9�

and that the total force on the polyelectrolyte �which includes
its Debye layer� is zero:

�
0

L

2�a�� �w

�r
�

r=a
dz = 0. �10�

The total force is zero since the polyelectrolyte moves
through the pore without acceleration.

Equations �9� and �10� yield, after some algebra,

Q

�a2ue
=

I0I2 − I1I3

I1I2 + 2I0I2 − I0I1
, �11�

v
ue

=
I0

2 − 2I0I3 − I0I2

I1I2 + 2I0I2 − I0I1
, �12�

where I0, I1, I2, and I3 are dimensionless constants that de-
pend solely on pore shape. They are defined as follows: I0
= 
f−1�, I1= 
f−1�R*

2−1��, I2= 
f−1�R*
2−1�−1�R*

2−2 ln R*−1��,
and I3= 
f−1�R*

2−1�−2�R*
2−2 ln R*−1��, where 
¯�

=L−1�0
L�¯�dz denotes average along the pore length.

To calculate a numerical value for the translocation speed
�v� from Eq. �12�, the � potential in Eq. �6� must be related to
the charge per unit length of the polyelectrolyte, �, which is
usually known from the chemistry. In order to do so, one
must adopt some model for the structure of the Debye layer.
For the purpose of this calculation, the simplest model
should suffice. Thus, it is assumed that the Debye layer is

FIG. 1. Translocation of a polyelectrolyte across a nanopore,
geometry of the pore region.
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described by the Poisson Boltzmann equation in the Debye-
Huckel limit �19�. Therefore, the electric potential due to the
polyelectrolyte, 	�r�, satisfies

1

r

d

dr
�r

d	

dr
� =

	

�D
2 , �13�

with the boundary conditions 	�a�=� and 	�
�=0. The so-
lution to this boundary value problem may be expressed in
terms of the zeroth-order modified Bessel function K0:

	�r� =
K0�r/�D�
K0�a/�D�

� . �14�

The linear charge density � can be related to the potential 	
by Gauss’s law:

− 2�a	��a� =
�

�
. �15�

Evaluating 	��a� from Eq. �14� and substituting into Eq. �15�
we have

� =
��D

2�a�

K0�a/�D�
K1�a/�D�

, �16�

where K1 is the modified Bessel function of order 1. For the
purpose of comparison with experimental data, it is
convenient to replace the current I in Eq. �6� with the poten-
tial difference across the pore, �V=V�0�−V�L�, where V�z�
is the externally applied potential in the pore. Such a relation
�Ohm’s law� is readily obtained on integrating Eq. �1�
between z=0 and z=L: I / ���a2�=�V / �I4L� where
I4= 
�R*

2−1�−1�. Therefore Eq. �6� for ue may be written in an
alternate form that does not involve the current or the con-
ductivity,

ue = −
��

�

�V

L

1

I4
= −

ue0

I4
. �17�

The quantity ue0= ��� /����V /L� has a very simple interpre-
tation: it is the velocity with which a particle of any shape
and the surface potential � will move if placed in an un-
bounded fluid medium and acted upon by the average elec-
tric field that exists within the pore �20�. The funnel shape
shown in Fig. 1 may be assumed for the solid-state nanop-
ores: R�z�=R0+ �L−h0−z�tan � if z�L−h0 and R�z�=R0

otherwise, � being the semivertical angle of the cone. The
integrals I0, I1, I2, I3, and I4 are then evaluated numerically.

The prediction for the translocation speed v given by Eq.
�12� is now compared with a set of measured values reported
by Storm et al. �4,14�. Table I summarizes the various
parameters needed for such a comparison �e is the charge of
a proton�. The pore radius R0=4.0 nm for the experiment

with circular DNA �see Fig. 2� but 5.0 nm in all other cases.
The dielectric constant � /�0=80 and dynamic viscosity
�=8.91
10−4 Pa s for the electrolyte are taken as those of
water. Equation �16� then gives2 ��−56 mV. For highly
charged polyelectrolytes such as DNA, it has been shown by
Manning �21� and Oosawa �22� that some of the counter-ions
condense onto the surface of the polyelectrolyte, reducing its
effective charge to �eff=� /qB. For DNA, at room tempera-
ture, in weak salt solutions ��D�a� and away from bound-
aries, the Manning factor qB�4.2. However, under the con-
ditions of the experiment, �D�a, and further, the
polyelectrolyte is in the vicinity of a dielectric/conductor in-
terface which has an effect on qB �23�. Thus, the value of
� is uncertain by perhaps as much as an order of magnitude.
The characteristic velocity ue0 defined by Eq. �17� is
ue0�15.7 mm/s in the absence of counter-ion condensation
�qB=1� but it is reduced to 3.7 mm/s if qB=4.2 is assumed.

The lines in Fig. 2 show the translocation velocity v cal-
culated from Eq. �12� as a function of R0 /a−1. The experi-
mental data points are determined using Table I and Fig. 11
of Ref. �14�. The translocation velocities are obtained by
dividing the DNA length �11.5 kbp and 48.5 kbp� by the
measured mean translocation times. The uncertainty in the
velocity corresponds to the spread in the translocation times.
Four different modes can be distinguished �14� for the DNA
crossing, the two fundamental modes denoted as types 1 and
2 and the mixed-mode types 12 and 21. In type 1 the DNA
passes through the nanopore without any folds. In the case of
type-2 translocation of a linear chain or in the translocation
of a circular chain, the DNA is folded in half so that its
effective length is reduced to L /2 from L. In that case the
two parallel DNA fibers that simultaneously thread the pore
may be regarded as equivalent to a single cylindrical poly-
electrolyte which has the same � potential but a larger radius
aeff. The effective radius is determined by the requirement
that the same fractional area of the pore be blocked. That is,
the effective radius is aeff=�2a�1.41 nm. Such a reduction
has been used to calculate R0 /a−1 for the type-2 and circular
DNA cases shown in Fig. 2. An uncertainty of ±0.5 nm for
the value of R0 is assumed due to errors such as the departure
of the nanopore from a strictly circular shape and possible
presence of hydration shells on the surface.

Lubensky and Nelson �5� and Storm et al. �24� estimated
the viscous force as fv��2�aL�v� / �R0−a��0.5–5.0 pN, if
v�1–10 mm/s. When compared with the electrical force
fel���V�113 pN, it appeared that viscous friction could
not balance the electrical traction and therefore other mecha-
nisms were needed to explain the observed translocation
rates. Figure 2 demonstrates that this is not so. Two effects
intervene to lower the estimate for the electrical force and
raise the estimate for the viscous force: �a� due to shielding
by counter-ions, the electrical force is reduced by as much as
an order of magnitude �25� and �b� the change in the
flow velocity takes place primarily across the thickness of a

2A � potential also exists on the substrate-electrolyte interface, but
at the very high counter-ion concentrations considered here
��1 M� its value is negligibly small compared to that of the poly-
electrolyte �Ref. �29��.

TABLE I. Experimental parameters from Ref. �14�.

R0

�nm�
a

�nm�
L

�nm�
h0

�nm�
�

�deg�
�D

�nm�
�

�e /nm�
�V

�mV�

5.0/4.0 1.0 340 40 36 0.3 −5.9 −120
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Debye layer, �D, and not over R0−a, so that the actual vis-
cous force is larger by a factor of approximately
�R0−a� /�D�10. In fact, in the thin-Debye-layer limit, the
solution for the fluid flow within the Debye layer guarantees
an exact cancellation of the electrical force with the viscous
force on every surface element dS of the polyelectrolyte.
Figure 2 also shows that the translocation velocity does have
a weak dependence on polymer length. In a certain range of
polymer lengths, the data can be fit by a power law v
�L−0.26 �24�. This fact cannot be explained by the model
presented here or by any other model that localizes all of the
resistive force within the pore. The dependence on polymer
length must arise from additional effects not considered here
such as the viscous resistance from the part of the polymer
that lies outside the pore �24�.

The largest source of uncertainty in the above calculation
arises from the difficulty of obtaining accurately a value of �.
The current understanding of the physics of the Debye layer
is still incomplete so that even in the classical problems of
electrokinetics, such as in the electrophoresis of a sphere,
unresolved discrepancies exist between Eq. �4� and the �
determined from more direct measurements of charge �26�.
The use of the lubrication equations and the assumption of a
simplified axisymmetric geometry for the pore also contrib-
ute to the error but these are likely to be much less than the
ones just mentioned. One may question the use of continuum
hydrodynamics in the first place to calculate the mean mo-
tion of the polymer. Note, however, in the case of water, the

intermolecular spacing is of the order of 0.1 nm which is
significantly smaller than the �2 nm inner diameter and
4–5 nm outer diameter of the pore. The applicability of the
no-slip condition at the solid-liquid interfaces is still a matter
of contention �27�. Nevertheless, possible slip lengths are
miniscule and amount to an uncertainty in the values of R0
and a by perhaps a fraction of a nanometer. In fact, classical
hydrodynamics �i.e., Stokes equations with no-slip boundary
conditions� works reasonably well for water down to several
tenths of nanometers; for example, for nonelectrolytes, mo-
lecular sizes calculated on the basis of the Stokes-Einstein
relation or Einstein’s viscosity law for dilute suspensions
agree with molecular-structure-based determinations to
within 10%–15% �28� even for molecules in the
0.3–0.5 nm range. The use of the continuum hydrodynamics
model for calculating statistical averages in the manner used
here is therefore not likely to be a significant source of un-
certainty, at least for the solid-state nanopores.

In summary, a model of the pore resistance based on con-
tinuum hydrodynamics and electrostatics produces estimates
for the translocation speed of dsDNA in solid-state nanop-
ores to within an order of magnitude of experimental values.
The present analysis needs to be modified for protein nanop-
ores because certain approximations such as the thin Debye
layer are not applicable in that case.

The author wishes to thank Professor David Deamer for
helpful discussions.
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